7个学妹看见都惊呆的Python小项目!【附源码】

新闻资讯   2023-07-21 10:26   64   0  
👇👇关注后回复 “进群” ,拉你进程序员交流群👇👇


作者丨Amo Xiang

原文链接:

https://blog.csdn.net/xw1680/article/details/116201057


界面应用

1、计算器

1. 案例介绍

本例利用 Python 开发一个可以进行简单的四则运算的图形化计算器,会用到 Tkinter 图形组件进行开发。主要知识点:Python Tkinter 界面编程;计算器逻辑运算实现。本例难度为初级,适合具有 Python 基础和 Tkinter 组件编程知识的用户学习。

2. 设计原理

要制作一个计算器,首先需要知道它由哪些部分组成。示意如下图所示。

从结构上来说,一个简单的图形界面,需要由界面组件、组件的事件监听器(响应各类事件的逻辑)和具体的事件处理逻辑组成。界面实现的主要工作是创建各个界面组件对象,对其进行初始化,以及控制各组件之间的层次关系和布局。


3. 示例效果

4. 示例源码

import tkinterimport mathimport tkinter.messagebox

class Calculator(object): # 界面布局方法 def __init__(self): # 创建主界面,并且保存到成员属性中 self.root = tkinter.Tk() self.root.minsize(280, 450) self.root.maxsize(280, 470) self.root.title('计算器') # 设置显式面板的变量 self.result = tkinter.StringVar() self.result.set(0) # 设置一个全局变量 运算数字和f符号的列表 self.lists = [] # 添加一个用于判断是否按下运算符号的标志 self.ispresssign = False # 界面布局 self.menus() self.layout() self.root.mainloop()
# 计算器菜单界面摆放
def menus(self): # 添加菜单 # 创建总菜单 allmenu = tkinter.Menu(self.root) # 添加子菜单 filemenu = tkinter.Menu(allmenu, tearoff=0) # 添加选项卡 filemenu.add_command( label='标准型(T) Alt+1', command=self.myfunc) filemenu.add_command( label='科学型(S) Alt+2', command=self.myfunc) filemenu.add_command( label='程序员(P) Alt+3', command=self.myfunc) filemenu.add_command(label='统计信息(A) Alt+4', command=self.myfunc) # 添加分割线 filemenu.add_separator() # 添加选项卡 filemenu.add_command(label='历史记录(Y) Ctrl+H', command=self.myfunc) filemenu.add_command(label='数字分组(I)', command=self.myfunc) # 添加分割线 filemenu.add_separator() # 添加选项卡 filemenu.add_command( label='基本(B) Ctrl+F4', command=self.myfunc) filemenu.add_command(label='单位转换(U) Ctrl+U', command=self.myfunc) filemenu.add_command(label='日期计算(D) Ctrl+E', command=self.myfunc) menu1 = tkinter.Menu(filemenu, tearoff=0) menu1.add_command(label='抵押(M)', command=self.myfunc) menu1.add_command(label='汽车租赁(V)', command=self.myfunc) menu1.add_command(label='油耗(mpg)(F)', command=self.myfunc) menu1.add_command(label='油耗(l/100km)(U)', command=self.myfunc) filemenu.add_cascade(label='工作表(W)', menu=menu1) allmenu.add_cascade(label='查看(V)', menu=filemenu)
# 添加子菜单2 editmenu = tkinter.Menu(allmenu, tearoff=0) # 添加选项卡 editmenu.add_command(label='复制(C) Ctrl+C', command=self.myfunc) editmenu.add_command(label='粘贴(V) Ctrl+V', command=self.myfunc) # 添加分割线 editmenu.add_separator() # 添加选项卡 menu2 = tkinter.Menu(filemenu, tearoff=0) menu2.add_command(label='复制历史记录(I)', command=self.myfunc) menu2.add_command( label='编辑(E) F2', command=self.myfunc) menu2.add_command(label='取消编辑(N) Esc', command=self.myfunc) menu2.add_command(label='清除(L) Ctrl+Shift+D', command=self.myfunc) editmenu.add_cascade(label='历史记录(H)', menu=menu2) allmenu.add_cascade(label='编辑(E)', menu=editmenu)
# 添加子菜单3 helpmenu = tkinter.Menu(allmenu, tearoff=0) # 添加选项卡 helpmenu.add_command(label='查看帮助(V) F1', command=self.myfunc) # 添加分割线 helpmenu.add_separator() # 添加选项卡 helpmenu.add_command(label='关于计算器(A)', command=self.myfunc) allmenu.add_cascade(label='帮助(H)', menu=helpmenu)
self.root.config(menu=allmenu)
# 计算器主界面摆放
def layout(self): # 显示屏 result = tkinter.StringVar() result.set(0) show_label = tkinter.Label(self.root, bd=3, bg='white', font=( '宋体', 30), anchor='e', textvariable=self.result) show_label.place(x=5, y=20, width=270, height=70) # 功能按钮MC button_mc = tkinter.Button(self.root, text='MC', command=self.wait) button_mc.place(x=5, y=95, width=50, height=50) # 功能按钮MR button_mr = tkinter.Button(self.root, text='MR', command=self.wait) button_mr.place(x=60, y=95, width=50, height=50) # 功能按钮MS button_ms = tkinter.Button(self.root, text='MS', command=self.wait) button_ms.place(x=115, y=95, width=50, height=50) # 功能按钮M+ button_mjia = tkinter.Button(self.root, text='M+', command=self.wait) button_mjia.place(x=170, y=95, width=50, height=50) # 功能按钮M- button_mjian = tkinter.Button(self.root, text='M-', command=self.wait) button_mjian.place(x=225, y=95, width=50, height=50) # 功能按钮← button_zuo = tkinter.Button(self.root, text='←', command=self.dele_one) button_zuo.place(x=5, y=150, width=50, height=50) # 功能按钮CE button_ce = tkinter.Button( self.root, text='CE', command=lambda: self.result.set(0)) button_ce.place(x=60, y=150, width=50, height=50) # 功能按钮C button_c = tkinter.Button(self.root, text='C', command=self.sweeppress) button_c.place(x=115, y=150, width=50, height=50) # 功能按钮± button_zf = tkinter.Button(self.root, text='±', command=self.zf) button_zf.place(x=170, y=150, width=50, height=50) # 功能按钮√ button_kpf = tkinter.Button(self.root, text='√', command=self.kpf) button_kpf.place(x=225, y=150, width=50, height=50) # 数字按钮7 button_7 = tkinter.Button( self.root, text='7', command=lambda: self.pressnum('7')) button_7.place(x=5, y=205, width=50, height=50) # 数字按钮8 button_8 = tkinter.Button( self.root, text='8', command=lambda: self.pressnum('8')) button_8.place(x=60, y=205, width=50, height=50) # 数字按钮9 button_9 = tkinter.Button( self.root, text='9', command=lambda: self.pressnum('9')) button_9.place(x=115, y=205, width=50, height=50) # 功能按钮/ button_division = tkinter.Button( self.root, text='/', command=lambda: self.presscalculate('/')) button_division.place(x=170, y=205, width=50, height=50) # 功能按钮% button_remainder = tkinter.Button( self.root, text='//', command=lambda: self.presscalculate('//')) button_remainder.place(x=225, y=205, width=50, height=50) # 数字按钮4 button_4 = tkinter.Button( self.root, text='4', command=lambda: self.pressnum('4')) button_4.place(x=5, y=260, width=50, height=50) # 数字按钮5 button_5 = tkinter.Button( self.root, text='5', command=lambda: self.pressnum('5')) button_5.place(x=60, y=260, width=50, height=50) # 数字按钮6 button_6 = tkinter.Button( self.root, text='6', command=lambda: self.pressnum('6')) button_6.place(x=115, y=260, width=50, height=50) # 功能按钮* button_multiplication = tkinter.Button( self.root, text='*', command=lambda: self.presscalculate('*')) button_multiplication.place(x=170, y=260, width=50, height=50) # 功能按钮1/x button_reciprocal = tkinter.Button( self.root, text='1/x', command=self.ds) button_reciprocal.place(x=225, y=260, width=50, height=50) # 数字按钮1 button_1 = tkinter.Button( self.root, text='1', command=lambda: self.pressnum('1')) button_1.place(x=5, y=315, width=50, height=50) # 数字按钮2 button_2 = tkinter.Button( self.root, text='2', command=lambda: self.pressnum('2')) button_2.place(x=60, y=315, width=50, height=50) # 数字按钮3 button_3 = tkinter.Button( self.root, text='3', command=lambda: self.pressnum('3')) button_3.place(x=115, y=315, width=50, height=50) # 功能按钮- button_subtraction = tkinter.Button( self.root, text='-', command=lambda: self.presscalculate('-')) button_subtraction.place(x=170, y=315, width=50, height=50) # 功能按钮= button_equal = tkinter.Button( self.root, text='=', command=lambda: self.pressequal()) button_equal.place(x=225, y=315, width=50, height=105) # 数字按钮0 button_0 = tkinter.Button( self.root, text='0', command=lambda: self.pressnum('0')) button_0.place(x=5, y=370, width=105, height=50) # 功能按钮. button_point = tkinter.Button( self.root, text='.', command=lambda: self.pressnum('.')) button_point.place(x=115, y=370, width=50, height=50) # 功能按钮+ button_plus = tkinter.Button( self.root, text='+', command=lambda: self.presscalculate('+')) button_plus.place(x=170, y=370, width=50, height=50)
# 计算器菜单功能
def myfunc(self): tkinter.messagebox.showinfo('', '预留接口,学成之后,你是不是有冲动添加该功能.')
# 数字方法 def pressnum(self, num): # 全局化变量 # 判断是否按下了运算符号 if self.ispresssign == False: pass else: self.result.set(0) # 重置运算符号的状态 self.ispresssign = False if num == '.': num = '0.' # 获取面板中的原有数字 oldnum = self.result.get() # 判断界面数字是否为0 if oldnum == '0': self.result.set(num) else: # 连接上新按下的数字 newnum = oldnum + num
# 将按下的数字写到面板中 self.result.set(newnum)
# 运算函数 def presscalculate(self, sign): # 保存已经按下的数字和运算符号 # 获取界面数字 num = self.result.get() self.lists.append(num) # 保存按下的操作符号 self.lists.append(sign) # 设置运算符号为按下状态 self.ispresssign = True
# 获取运算结果
def pressequal(self): # 获取所有的列表中的内容(之前的数字和操作) # 获取当前界面上的数字 curnum = self.result.get() # 将当前界面的数字存入列表 self.lists.append(curnum) # 将列表转化为字符串 calculatestr = ''.join(self.lists) # 使用eval执行字符串中的运算即可 endnum = eval(calculatestr) # 将运算结果显示在界面中 self.result.set(str(endnum)[:10]) if self.lists != 0: self.ispresssign = True # 清空运算列表 self.lists.clear()
# 暂未开发说明
def wait(self): tkinter.messagebox.showinfo('', '更新中......')
# ←按键功能
def dele_one(self): if self.result.get() == '' or self.result.get() == '0': self.result.set('0') return else: num = len(self.result.get()) if num > 1: strnum = self.result.get() strnum = strnum[0:num - 1] self.result.set(strnum) else: self.result.set('0')
# ±按键功能
def zf(self): strnum = self.result.get() if strnum[0] == '-': self.result.set(strnum[1:]) elif strnum[0] != '-' and strnum != '0': self.result.set('-' + strnum)
# 1/x按键功能
def ds(self): dsnum = 1 / int(self.result.get()) self.result.set(str(dsnum)[:10]) if self.lists != 0: self.ispresssign = True # 清空运算列表 self.lists.clear()
# C按键功能
def sweeppress(self): self.lists.clear() self.result.set(0)
# √按键功能
def kpf(self): strnum = float(self.result.get()) endnum = math.sqrt(strnum) if str(endnum)[-1] == '0': self.result.set(str(endnum)[:-2]) else: self.result.set(str(endnum)[:10]) if self.lists != 0: self.ispresssign = True # 清空运算列表 self.lists.clear()

# 实例化对象my_calculator = Calculator()


2、记事本

1. 案例介绍

tkinter 是 Python下面向 tk 的图形界面接口库,可以方便地进行图形界面设计和交互操作编程。tkinter 的优点是简单易用、与 Python 的结合度好。tkinter 在 Python 3.x 下默认集成,不需要额外的安装操作;不足之处为缺少合适的可视化界面设计工具,需要通过代码来完成窗口设计和元素布局。

本例采用的 Python 版本为 3.8,如果想在 python 2.x下使用 tkinter,请先进行安装。需要注意的是,不同 Python 版本下的 tkinter 使用方式可能略有不同,建议采用 Python3.x 版本。

本例难度为中级,适合具有 Python 基础和 Tkinter 组件编程知识的用户学习。

2. 示例效果


3. 示例源码

from tkinter import *from tkinter.filedialog import *from tkinter.messagebox import *import os
filename = ""

def author(): showinfo(title="作者", message="Python")

def power(): showinfo(title="版权信息", message="课堂练习")

def mynew(): global top, filename, textPad top.title("未命名文件") filename = None textPad.delete(1.0, END)

def myopen(): global filename filename = askopenfilename(defaultextension=".txt") if filename == "": filename = None else: top.title("记事本" + os.path.basename(filename)) textPad.delete(1.0, END) f = open(filename, 'r') textPad.insert(1.0, f.read()) f.close()

def mysave(): global filename try: f = open(filename, 'w') msg = textPad.get(1.0, 'end') f.write(msg) f.close() except: mysaveas()

def mysaveas(): global filename f = asksaveasfilename(initialfile="未命名.txt", defaultextension=".txt") filename = f fh = open(f, 'w') msg = textPad.get(1.0, END) fh.write(msg) fh.close() top.title("记事本 " + os.path.basename(f))

def cut(): global textPad textPad.event_generate("<<Cut>>")

def copy(): global textPad textPad.event_generate("<<Copy>>")

def paste(): global textPad textPad.event_generate("<<Paste>>")

def undo(): global textPad textPad.event_generate("<<Undo>>")

def redo(): global textPad textPad.event_generate("<<Redo>>")

def select_all(): global textPad # textPad.event_generate("<<Cut>>") textPad.tag_add("sel", "1.0", "end")

def find(): t = Toplevel(top) t.title("查找") t.geometry("260x60+200+250") t.transient(top) Label(t, text="查找:").grid(row=0, column=0, sticky="e") v = StringVar() e = Entry(t, width=20, textvariable=v) e.grid(row=0, column=1, padx=2, pady=2, sticky="we") e.focus_set() c = IntVar() Checkbutton(t, text="不区分大小写", variable=c).grid(row=1, column=1, sticky='e') Button(t, text="查找所有", command=lambda: search(v.get(), c.get(), textPad, t, e)).grid(row=0, column=2, sticky="e" + "w", padx=2, pady=2)
def close_search(): textPad.tag_remove("match", "1.0", END) t.destroy()
t.protocol("WM_DELETE_WINDOW", close_search)

def mypopup(event): # global editmenu editmenu.tk_popup(event.x_root, event.y_root)

def search(needle, cssnstv, textPad, t, e): textPad.tag_remove("match", "1.0", END) count = 0 if needle: pos = "1.0" while True: pos = textPad.search(needle, pos, nocase=cssnstv, stopindex=END) if not pos: break lastpos = pos + str(len(needle)) textPad.tag_add("match", pos, lastpos) count += 1 pos = lastpos textPad.tag_config('match', fg='yellow', bg="green") e.focus_set() t.title(str(count) + "个被匹配")

top = Tk()top.title("记事本")top.geometry("600x400+100+50")
menubar = Menu(top)
# 文件功能filemenu = Menu(top)filemenu.add_command(label="新建", accelerator="Ctrl+N", command=mynew)filemenu.add_command(label="打开", accelerator="Ctrl+O", command=myopen)filemenu.add_command(label="保存", accelerator="Ctrl+S", command=mysave)filemenu.add_command(label="另存为", accelerator="Ctrl+shift+s", command=mysaveas)menubar.add_cascade(label="文件", menu=filemenu)
# 编辑功能editmenu = Menu(top)editmenu.add_command(label="撤销", accelerator="Ctrl+Z", command=undo)editmenu.add_command(label="重做", accelerator="Ctrl+Y", command=redo)editmenu.add_separator()editmenu.add_command(label="剪切", accelerator="Ctrl+X", command=cut)editmenu.add_command(label="复制", accelerator="Ctrl+C", command=copy)editmenu.add_command(label="粘贴", accelerator="Ctrl+V", command=paste)editmenu.add_separator()editmenu.add_command(label="查找", accelerator="Ctrl+F", command=find)editmenu.add_command(label="全选", accelerator="Ctrl+A", command=select_all)menubar.add_cascade(label="编辑", menu=editmenu)
# 关于 功能aboutmenu = Menu(top)aboutmenu.add_command(label="作者", command=author)aboutmenu.add_command(label="版权", command=power)menubar.add_cascade(label="关于", menu=aboutmenu)
top['menu'] = menubar
# shortcutbar = Frame(top, height=25, bg='light sea green')# shortcutbar.pack(expand=NO, fill=X)# Inlabe = Label(top, width=2, bg='antique white')# Inlabe.pack(side=LEFT, anchor='nw', fill=Y)
textPad = Text(top, undo=True)textPad.pack(expand=YES, fill=BOTH)scroll = Scrollbar(textPad)textPad.config(yscrollcommand=scroll.set)scroll.config(command=textPad.yview)scroll.pack(side=RIGHT, fill=Y)
# 热键绑定textPad.bind("<Control-N>", mynew)textPad.bind("<Control-n>", mynew)textPad.bind("<Control-O>", myopen)textPad.bind("<Control-o>", myopen)textPad.bind("<Control-S>", mysave)textPad.bind("<Control-s>", mysave)textPad.bind("<Control-A>", select_all)textPad.bind("<Control-a>", select_all)textPad.bind("<Control-F>", find)textPad.bind("<Control-f>", find)
textPad.bind("<Button-3>", mypopup)top.mainloop()


3、登录和注册

1. 案例介绍

本例设计一个用户登录和注册模块,使用 Tkinter 框架构建界面,主要用到画布、文本框、按钮等组件。涉及知识点:Python Tkinter 界面编程、pickle 数据存储。本例实现了基本的用户登录和注册互动界面,并提供用户信息存储和验证。

pickle 是 python 语言的一个标准模块,安装 python 后已包含 pickle 库,不需要单独再安装。pickle 模块实现了基本的数据序列化和反序列化。通过 pickle 模块的序列化操作能够将程序中运行的对象信息保存到文件中去,久存储;通过 pickle 模块的反序列化操作,能够从文件中创建上一次程序保存的对象。

本例难度为中级,适合具有 Python 基础和 Tkinter 组件编程知识的用户学习。

2. 示例效果


3. 示例源码

import tkinter as tkimport pickleimport tkinter.messageboxfrom PIL import Image, ImageTk
# 设置窗口---最开始的母体窗口window = tk.Tk() # 建立一个窗口window.title('欢迎登录')window.geometry('450x300') # 窗口大小为300x200
# 画布canvas = tk.Canvas(window, height=200, width=900)# 加载图片im = Image.open("images/01.png")image_file = ImageTk.PhotoImage(im)# image_file = tk.PhotoImage(file='images/01.gif')image = canvas.create_image(100, 40, anchor='nw', image=image_file)canvas.pack(side='top')
# 两个文字标签,用户名和密码两个部分tk.Label(window, text='用户名').place(x=100, y=150)tk.Label(window, text='密 码').place(x=100, y=190)
var_usr_name = tk.StringVar() # 讲文本框的内容,定义为字符串类型var_usr_name.set('[email protected]') # 设置默认值var_usr_pwd = tk.StringVar()
# 第一个输入框-用来输入用户名的。# textvariable 获取文本框的内容entry_usr_name = tk.Entry(window, textvariable=var_usr_name)entry_usr_name.place(x=160, y=150)# 第二个输入框-用来输入密码的。entry_usr_pwd = tk.Entry(window, textvariable=var_usr_pwd, show='*')entry_usr_pwd.place(x=160, y=190)

def usr_login(): usr_name = var_usr_name.get() usr_pwd = var_usr_pwd.get() try: with open('usrs_info.pickle', 'rb') as usr_file: usrs_info = pickle.load(usr_file) except FileNotFoundError: with open('usrs_info.pickle', 'wb') as usr_file: usrs_info = {'admin': 'admin'} pickle.dump(usrs_info, usr_file)
if usr_name in usrs_info: if usr_pwd == usrs_info[usr_name]: tk.messagebox.showinfo( title='欢迎光临', message=usr_name + ':请进入个人首页,查看最新资讯') else: tk.messagebox.showinfo(message='错误提示:密码不对,请重试') else: is_sign_up = tk.messagebox.askyesno('提示', '你还没有注册,请先注册') print(is_sign_up) if is_sign_up: usr_sign_up()

# 注册按钮def usr_sign_up(): def sign_to_Mofan_Python(): np = new_pwd.get() npf = new_pwd_confirm.get() nn = new_name.get() # 上面是获取数据,下面是查看一下是否重复注册过 with open('usrs_info.pickle', 'rb') as usr_file: exist_usr_info = pickle.load(usr_file) if np != npf: tk.messagebox.showerror('错误提示', '密码和确认密码必须一样') elif nn in exist_usr_info: tk.messagebox.showerror('错误提示', '用户名早就注册了!') else: exist_usr_info[nn] = np with open('usrs_info.pickle', 'wb') as usr_file: pickle.dump(exist_usr_info, usr_file) tk.messagebox.showinfo('欢迎', '你已经成功注册了') window_sign_up.destroy()
# 点击注册之后,会弹出这个窗口界面。 window_sign_up = tk.Toplevel(window) window_sign_up.title('欢迎注册') window_sign_up.geometry('360x200') # 中间是x,而不是*号
# 用户名框--这里输入用户名框。 new_name = tk.StringVar() new_name.set('[email protected]') # 设置的是默认值 tk.Label(window_sign_up, text='用户名').place(x=10, y=10) entry_new_name = tk.Entry(window_sign_up, textvariable=new_name) entry_new_name.place(x=100, y=10)
# 新密码框--这里输入注册时候的密码 new_pwd = tk.StringVar() tk.Label(window_sign_up, text='密 码').place(x=10, y=50) entry_usr_pwd = tk.Entry(window_sign_up, textvariable=new_pwd, show='*') entry_usr_pwd.place(x=100, y=50)
# 密码确认框 new_pwd_confirm = tk.StringVar() tk.Label(window_sign_up, text='确认密码').place(x=10, y=90) entry_usr_pwd_confirm = tk.Entry( window_sign_up, textvariable=new_pwd_confirm, show='*') entry_usr_pwd_confirm.place(x=100, y=90)
btn_confirm_sign_up = tk.Button( window_sign_up, text=' 注 册 ', command=sign_to_Mofan_Python) btn_confirm_sign_up.place(x=120, y=130)

# 创建注册和登录按钮btn_login = tk.Button(window, text=' 登 录 ', command=usr_login)btn_login.place(x=150, y=230) # 用place来处理按钮的位置信息。btn_sign_up = tk.Button(window, text=' 注 册 ', command=usr_sign_up)btn_sign_up.place(x=250, y=230)
window.mainloop()


游戏开发

1、2048

1. 游戏简介

2048 是一款比较流行的数字游戏。游戏规则:每次可按上、下、左、右方向键滑动数字,每滑动一次,所有数字都会往滑动方向靠拢,同时在空白位置随机出现一个数字,相同数字在靠拢时会相加。不断叠加最终拼出 2048 这个数字算成功。

2048 最早于 2014年3月20日发行。原版 2048 首先在 GitHub 上发布,原作者是 Gabriele Cirulli,后被移植到各个平台。

本例难度为初级,适合具有 Python 基础和 Pygame 编程知识的用户学习。

2. 设计原理

这个游戏的本质是二维列表,就以 4*4 的二位列表来分析关键的逻辑以及实现。二维列表如下图:

所有的操作都是对这个二维列表的数据的操作。分为上下左右四个方向。先说向左的方向(如图)。

向左操作的结果如下图;当向左的方向是,所有的数据沿着水平方向向左跑。

水平说明操作的是二维列表的一行,而垂直操作的则是二位列表的一列。这样就可以将二维列表的操作变成遍历后对一维列表的操作。向左说明数据的优先考虑的位置是从左开始的。这样就确定了一维列表的遍历开始的位置。

上面第 2 个图共四行,每一个行都能得到一个列表。

list1[0,0,2,0]list2[0,4,2,0]list3[0,0,4,4]list4[2,0,2,0]

这样一来向左的方向就变成。从上到下获得每一行的列表,方向向左。参数(row,left)。

其他的三个方向在开始的时候记住是怎样获得以为列表的,等操作完才放回去这样就能实现了。

3. 示例效果

4. 示例源码

import randomimport sysimport pygamefrom pygame.locals import *
PIXEL = 150SCORE_PIXEL = 100SIZE = 4

# 地图的类

class Map: def __init__(self, size): self.size = size self.score = 0 self.map = [[0 for i in range(size)] for i in range(size)] self.add() self.add()
# 新增2或4,有1/4概率产生4 def add(self): while True: p = random.randint(0, self.size * self.size - 1) if self.map[int(p / self.size)][int(p % self.size)] == 0: x = random.randint(0, 3) > 0 and 2 or 4 self.map[int(p / self.size)][int(p % self.size)] = x self.score += x break
# 地图向左靠拢,其他方向的靠拢可以通过适当旋转实现,返回地图是否更新 def adjust(self): changed = False for a in self.map: b = [] last = 0 for v in a: if v != 0: if v == last: b.append(b.pop() << 1) last = 0 else: b.append(v) last = v b += [0] * (self.size - len(b)) for i in range(self.size): if a[i] != b[i]: changed = True a[:] = b return changed
# 逆时针旋转地图90度 def rotate90(self): self.map = [[self.map[c][r] for c in range(self.size)] for r in reversed(range(self.size))]
# 判断游戏结束 def over(self): for r in range(self.size): for c in range(self.size): if self.map[r][c] == 0: return False for r in range(self.size): for c in range(self.size - 1): if self.map[r][c] == self.map[r][c + 1]: return False for r in range(self.size - 1): for c in range(self.size): if self.map[r][c] == self.map[r + 1][c]: return False return True
def moveUp(self): self.rotate90() if self.adjust(): self.add() self.rotate90() self.rotate90() self.rotate90()
def moveRight(self): self.rotate90() self.rotate90() if self.adjust(): self.add() self.rotate90() self.rotate90()
def moveDown(self): self.rotate90() self.rotate90() self.rotate90() if self.adjust(): self.add() self.rotate90()
def moveLeft(self): if self.adjust(): self.add()

# 更新屏幕

def show(map): for i in range(SIZE): for j in range(SIZE): # 背景颜色块 screen.blit(map.map[i][j] == 0 and block[(i + j) % 2] or block[2 + (i + j) % 2], (PIXEL * j, PIXEL * i)) # 数值显示 if map.map[i][j] != 0: map_text = map_font.render( str(map.map[i][j]), True, (106, 90, 205)) text_rect = map_text.get_rect() text_rect.center = (PIXEL * j + PIXEL / 2, PIXEL * i + PIXEL / 2) screen.blit(map_text, text_rect) # 分数显示 screen.blit(score_block, (0, PIXEL * SIZE)) score_text = score_font.render((map.over( ) and "Game over with score " or "Score: ") + str(map.score), True, (106, 90, 205)) score_rect = score_text.get_rect() score_rect.center = (PIXEL * SIZE / 2, PIXEL * SIZE + SCORE_PIXEL / 2) screen.blit(score_text, score_rect) pygame.display.update()

map = Map(SIZE)pygame.init()screen = pygame.display.set_mode((PIXEL * SIZE, PIXEL * SIZE + SCORE_PIXEL))pygame.display.set_caption("2048")block = [pygame.Surface((PIXEL, PIXEL)) for i in range(4)]# 设置颜色block[0].fill((152, 251, 152))block[1].fill((240, 255, 255))block[2].fill((0, 255, 127))block[3].fill((225, 255, 255))score_block = pygame.Surface((PIXEL * SIZE, SCORE_PIXEL))score_block.fill((245, 245, 245))# 设置字体map_font = pygame.font.Font(None, int(PIXEL * 2 / 3))score_font = pygame.font.Font(None, int(SCORE_PIXEL * 2 / 3))clock = pygame.time.Clock()show(map)
while not map.over(): # 12为实验参数 clock.tick(12) for event in pygame.event.get(): if event.type == QUIT: sys.exit() # 接收玩家操作 pressed_keys = pygame.key.get_pressed() if pressed_keys[K_w] or pressed_keys[K_UP]: map.moveUp() elif pressed_keys[K_s] or pressed_keys[K_DOWN]: map.moveDown() elif pressed_keys[K_a] or pressed_keys[K_LEFT]: map.moveLeft() elif pressed_keys[K_d] or pressed_keys[K_RIGHT]: map.moveRight() show(map)
# 游戏结束pygame.time.delay(3000)


2、贪吃蛇

1. 案例介绍

贪吃蛇是一款经典的益智游戏,简单又耐玩。该游戏通过控制蛇头方向吃蛋,从而使得蛇变得越来越长。

通过上下左右方向键控制蛇的方向,寻找吃的东西,每吃一口就能得到一定的积分,而且蛇的身子会越吃越长,身子越长玩的难度就越大,不能碰墙,不能咬到自己的身体,更不能咬自己的尾巴,等到了一定的分数,就能过关,然后继续玩下一关。

本例难度为中级,适合具有 Python 基础和 Pygame 编程知识的用户学习。

2. 设计要点

游戏是基于 PyGame 框架制作的,程序核心逻辑如下:

游戏界面分辨率是 640*480,蛇和食物都是由 1 个或多个 20*20 像素的正方形块儿(为了方便,下文用点表示 20*20 像素的正方形块儿) 组成,这样共有 32*24 个点,使用 pygame.draw.rect 来绘制每一个点;

初始化时蛇的长度是 3,食物是 1 个点,蛇初始的移动的方向是右,用一个数组代表蛇,数组的每个元素是蛇每个点的坐标,因此数组的第一个坐标是蛇尾,最后一个坐标是蛇头;游戏开始后,根据蛇的当前移动方向,将蛇运动方向的前方的那个点 append 到蛇数组的末位,再把蛇尾去掉,蛇的坐标数组就相当于往前挪了一位;如果蛇吃到了食物,即蛇头的坐标等于食物的坐标,那么在第 2 点中蛇尾就不用去掉,就产生了蛇长度增加的效果;食物被吃掉后,随机在空的位置(不能与蛇的身体重合) 再生成一个;通过 PyGame 的 event 监控按键,改变蛇的方向,例如当蛇向右时,下一次改变方向只能向上或者向下;当蛇撞上自身或墙壁,游戏结束,蛇头装上自身,那么蛇坐标数组里就有和舌头坐标重复的数据,撞上墙壁则是蛇头坐标超过了边界,都很好判断;其他细节:做了个开始的欢迎界面;食物的颜色随机生成;吃到实物的时候有声音提示等。

3. 示例效果

4. 示例源码

import pygamefrom os import pathfrom sys import exitfrom time import sleepfrom random import choicefrom itertools import productfrom pygame.locals import QUIT, KEYDOWN

def direction_check(moving_direction, change_direction): directions = [['up', 'down'], ['left', 'right']] if moving_direction in directions[0] and change_direction in directions[1]: return change_direction elif moving_direction in directions[1] and change_direction in directions[0]: return change_direction return moving_direction

class Snake: colors = list(product([0, 64, 128, 192, 255], repeat=3))[1:-1]
def __init__(self): self.map = {(x, y): 0 for x in range(32) for y in range(24)} self.body = [[100, 100], [120, 100], [140, 100]] self.head = [140, 100] self.food = [] self.food_color = [] self.moving_direction = 'right' self.speed = 4 self.generate_food() self.game_started = False
def check_game_status(self): if self.body.count(self.head) > 1: return True if self.head[0] < 0 or self.head[0] > 620 or self.head[1] < 0 or self.head[1] > 460: return True return False
def move_head(self): moves = { 'right': (20, 0), 'up': (0, -20), 'down': (0, 20), 'left': (-20, 0) } step = moves[self.moving_direction] self.head[0] += step[0] self.head[1] += step[1]
def generate_food(self): self.speed = len( self.body) // 16 if len(self.body) // 16 > 4 else self.speed for seg in self.body: x, y = seg self.map[x // 20, y // 20] = 1 empty_pos = [pos for pos in self.map.keys() if not self.map[pos]] result = choice(empty_pos) self.food_color = list(choice(self.colors)) self.food = [result[0] * 20, result[1] * 20]

def main(): key_direction_dict = { 119: 'up', # W 115: 'down', # S 97: 'left', # A 100: 'right', # D 273: 'up', # UP 274: 'down', # DOWN 276: 'left', # LEFT 275: 'right', # RIGHT }
fps_clock = pygame.time.Clock() pygame.init() pygame.mixer.init() snake = Snake() sound = False if path.exists('eat.wav'): sound_wav = pygame.mixer.Sound("eat.wav") sound = True title_font = pygame.font.SysFont('simsunnsimsun', 32) welcome_words = title_font.render( '贪吃蛇', True, (0, 0, 0), (255, 255, 255)) tips_font = pygame.font.SysFont('simsunnsimsun', 20) start_game_words = tips_font.render( '点击开始', True, (0, 0, 0), (255, 255, 255)) close_game_words = tips_font.render( '按ESC退出', True, (0, 0, 0), (255, 255, 255)) gameover_words = title_font.render( '游戏结束', True, (205, 92, 92), (255, 255, 255)) win_words = title_font.render( '蛇很长了,你赢了!', True, (0, 0, 205), (255, 255, 255)) screen = pygame.display.set_mode((640, 480), 0, 32) pygame.display.set_caption('贪吃蛇') new_direction = snake.moving_direction while 1: for event in pygame.event.get(): if event.type == QUIT: exit() elif event.type == KEYDOWN: if event.key == 27: exit() if snake.game_started and event.key in key_direction_dict: direction = key_direction_dict[event.key] new_direction = direction_check( snake.moving_direction, direction) elif (not snake.game_started) and event.type == pygame.MOUSEBUTTONDOWN: x, y = pygame.mouse.get_pos() if 213 <= x <= 422 and 304 <= y <= 342: snake.game_started = True screen.fill((255, 255, 255)) if snake.game_started: snake.moving_direction = new_direction # 在这里赋值,而不是在event事件的循环中赋值,避免按键太快 snake.move_head() snake.body.append(snake.head[:]) if snake.head == snake.food: if sound: sound_wav.play() snake.generate_food() else: snake.body.pop(0) for seg in snake.body: pygame.draw.rect(screen, [0, 0, 0], [ seg[0], seg[1], 20, 20], 0) pygame.draw.rect(screen, snake.food_color, [ snake.food[0], snake.food[1], 20, 20], 0) if snake.check_game_status(): screen.blit(gameover_words, (241, 310)) pygame.display.update() snake = Snake() new_direction = snake.moving_direction sleep(3) elif len(snake.body) == 512: screen.blit(win_words, (33, 210)) pygame.display.update() snake = Snake() new_direction = snake.moving_direction sleep(3) else: screen.blit(welcome_words, (240, 150)) screen.blit(start_game_words, (246, 310)) screen.blit(close_game_words, (246, 350)) pygame.display.update() fps_clock.tick(snake.speed)

if __name__ == '__main__':    main()


3、俄罗斯方块

1. 案例介绍

俄罗斯方块是由 4 个小方块组成不同形状的板块,随机从屏幕上方落下,按方向键调整板块的位置和方向,在底部拼出完整的一行或几行。这些完整的横条会消失,给新落下来的板块腾出空间,并获得分数奖励。没有被消除掉的方块不断堆积,一旦堆到顶端,便告输,游戏结束。

本例难度为高级,适合具有 Python 进阶和 Pygame 编程技巧的用户学习。

2. 设计要点

边框――由 15*25 个空格组成,方块就落在这里面。

盒子――组成方块的其中小方块,是组成方块的基本单元。

方块――从边框顶掉下的东西,游戏者可以翻转和改变位置。每个方块由 4 个盒子组成。

形状――不同类型的方块。这里形状的名字被叫做 T, S, Z ,J, L, I , O。如下图所示:

模版――用一个列表存放形状被翻转后的所有可能样式。全部存放在变量里,变量名字如 S or J。

着陆――当一个方块到达边框的底部或接触到在其他的盒子话,就说这个方块着陆了。那样的话,另一个方块就会开始下落。

3. 示例效果

4. 示例源码

import pygameimport randomimport os
pygame.init()
GRID_WIDTH = 20GRID_NUM_WIDTH = 15GRID_NUM_HEIGHT = 25WIDTH, HEIGHT = GRID_WIDTH * GRID_NUM_WIDTH, GRID_WIDTH * GRID_NUM_HEIGHTSIDE_WIDTH = 200SCREEN_WIDTH = WIDTH + SIDE_WIDTHWHITE = (0xff, 0xff, 0xff)BLACK = (0, 0, 0)LINE_COLOR = (0x33, 0x33, 0x33)
CUBE_COLORS = [ (0xcc, 0x99, 0x99), (0xff, 0xff, 0x99), (0x66, 0x66, 0x99), (0x99, 0x00, 0x66), (0xff, 0xcc, 0x00), (0xcc, 0x00, 0x33), (0xff, 0x00, 0x33), (0x00, 0x66, 0x99), (0xff, 0xff, 0x33), (0x99, 0x00, 0x33), (0xcc, 0xff, 0x66), (0xff, 0x99, 0x00)]
screen = pygame.display.set_mode((SCREEN_WIDTH, HEIGHT))pygame.display.set_caption("俄罗斯方块")clock = pygame.time.Clock()FPS = 30
score = 0level = 1
screen_color_matrix = [[None] * GRID_NUM_WIDTH for i in range(GRID_NUM_HEIGHT)]
# 设置游戏的根目录为当前文件夹base_folder = os.path.dirname(__file__)

def show_text(surf, text, size, x, y, color=WHITE): font_name = os.path.join(base_folder, 'font/font.ttc') font = pygame.font.Font(font_name, size) text_surface = font.render(text, True, color) text_rect = text_surface.get_rect() text_rect.midtop = (x, y) surf.blit(text_surface, text_rect)

class CubeShape(object): SHAPES = ['I', 'J', 'L', 'O', 'S', 'T', 'Z'] I = [[(0, -1), (0, 0), (0, 1), (0, 2)], [(-1, 0), (0, 0), (1, 0), (2, 0)]] J = [[(-2, 0), (-1, 0), (0, 0), (0, -1)], [(-1, 0), (0, 0), (0, 1), (0, 2)], [(0, 1), (0, 0), (1, 0), (2, 0)], [(0, -2), (0, -1), (0, 0), (1, 0)]] L = [[(-2, 0), (-1, 0), (0, 0), (0, 1)], [(1, 0), (0, 0), (0, 1), (0, 2)], [(0, -1), (0, 0), (1, 0), (2, 0)], [(0, -2), (0, -1), (0, 0), (-1, 0)]] O = [[(0, 0), (0, 1), (1, 0), (1, 1)]] S = [[(-1, 0), (0, 0), (0, 1), (1, 1)], [(1, -1), (1, 0), (0, 0), (0, 1)]] T = [[(0, -1), (0, 0), (0, 1), (-1, 0)], [(-1, 0), (0, 0), (1, 0), (0, 1)], [(0, -1), (0, 0), (0, 1), (1, 0)], [(-1, 0), (0, 0), (1, 0), (0, -1)]] Z = [[(0, -1), (0, 0), (1, 0), (1, 1)], [(-1, 0), (0, 0), (0, -1), (1, -1)]] SHAPES_WITH_DIR = { 'I': I, 'J': J, 'L': L, 'O': O, 'S': S, 'T': T, 'Z': Z }
def __init__(self): self.shape = self.SHAPES[random.randint(0, len(self.SHAPES) - 1)] # 骨牌所在的行列 self.center = (2, GRID_NUM_WIDTH // 2) self.dir = random.randint(0, len(self.SHAPES_WITH_DIR[self.shape]) - 1) self.color = CUBE_COLORS[random.randint(0, len(CUBE_COLORS) - 1)]
def get_all_gridpos(self, center=None): curr_shape = self.SHAPES_WITH_DIR[self.shape][self.dir] if center is None: center = [self.center[0], self.center[1]]
return [(cube[0] + center[0], cube[1] + center[1]) for cube in curr_shape]
def conflict(self, center): for cube in self.get_all_gridpos(center): # 超出屏幕之外,说明不合法 if cube[0] < 0 or cube[1] < 0 or cube[0] >= GRID_NUM_HEIGHT or \ cube[1] >= GRID_NUM_WIDTH: return True
# 不为None,说明之前已经有小方块存在了,也不合法 if screen_color_matrix[cube[0]][cube[1]] is not None: return True
return False
def rotate(self): new_dir = self.dir + 1 new_dir %= len(self.SHAPES_WITH_DIR[self.shape]) old_dir = self.dir self.dir = new_dir if self.conflict(self.center): self.dir = old_dir return False
def down(self): # import pdb; pdb.set_trace() center = (self.center[0] + 1, self.center[1]) if self.conflict(center): return False
self.center = center return True
def left(self): center = (self.center[0], self.center[1] - 1) if self.conflict(center): return False self.center = center return True
def right(self): center = (self.center[0], self.center[1] + 1) if self.conflict(center): return False self.center = center return True
def draw(self): for cube in self.get_all_gridpos(): pygame.draw.rect(screen, self.color, (cube[1] * GRID_WIDTH, cube[0] * GRID_WIDTH, GRID_WIDTH, GRID_WIDTH)) pygame.draw.rect(screen, WHITE, (cube[1] * GRID_WIDTH, cube[0] * GRID_WIDTH, GRID_WIDTH, GRID_WIDTH), 1)

def draw_grids(): for i in range(GRID_NUM_WIDTH): pygame.draw.line(screen, LINE_COLOR, (i * GRID_WIDTH, 0), (i * GRID_WIDTH, HEIGHT))
for i in range(GRID_NUM_HEIGHT): pygame.draw.line(screen, LINE_COLOR, (0, i * GRID_WIDTH), (WIDTH, i * GRID_WIDTH))
pygame.draw.line(screen, WHITE, (GRID_WIDTH * GRID_NUM_WIDTH, 0), (GRID_WIDTH * GRID_NUM_WIDTH, GRID_WIDTH * GRID_NUM_HEIGHT))

def draw_matrix(): for i, row in zip(range(GRID_NUM_HEIGHT), screen_color_matrix): for j, color in zip(range(GRID_NUM_WIDTH), row): if color is not None: pygame.draw.rect(screen, color, (j * GRID_WIDTH, i * GRID_WIDTH, GRID_WIDTH, GRID_WIDTH)) pygame.draw.rect(screen, WHITE, (j * GRID_WIDTH, i * GRID_WIDTH, GRID_WIDTH, GRID_WIDTH), 2)

def draw_score(): show_text(screen, u'得分:{}'.format(score), 20, WIDTH + SIDE_WIDTH // 2, 100)

def remove_full_line(): global screen_color_matrix global score global level new_matrix = [[None] * GRID_NUM_WIDTH for i in range(GRID_NUM_HEIGHT)] index = GRID_NUM_HEIGHT - 1 n_full_line = 0 for i in range(GRID_NUM_HEIGHT - 1, -1, -1): is_full = True for j in range(GRID_NUM_WIDTH): if screen_color_matrix[i][j] is None: is_full = False continue if not is_full: new_matrix[index] = screen_color_matrix[i] index -= 1 else: n_full_line += 1 score += n_full_line level = score // 20 + 1 screen_color_matrix = new_matrix

def show_welcome(screen): show_text(screen, u'俄罗斯方块', 30, WIDTH / 2, HEIGHT / 2) show_text(screen, u'按任意键开始游戏', 20, WIDTH / 2, HEIGHT / 2 + 50)

running = Truegameover = Truecounter = 0live_cube = Nonewhile running: clock.tick(FPS) for event in pygame.event.get(): if event.type == pygame.QUIT: running = False elif event.type == pygame.KEYDOWN: if gameover: gameover = False live_cube = CubeShape() break if event.key == pygame.K_LEFT: live_cube.left() elif event.key == pygame.K_RIGHT: live_cube.right() elif event.key == pygame.K_DOWN: live_cube.down() elif event.key == pygame.K_UP: live_cube.rotate() elif event.key == pygame.K_SPACE: while live_cube.down() == True: pass remove_full_line()
# level 是为了方便游戏的难度,level 越高 FPS // level 的值越小 # 这样屏幕刷新的就越快,难度就越大 if gameover is False and counter % (FPS // level) == 0: # down 表示下移骨牌,返回False表示下移不成功,可能超过了屏幕或者和之前固定的 # 小方块冲突了 if live_cube.down() == False: for cube in live_cube.get_all_gridpos(): screen_color_matrix[cube[0]][cube[1]] = live_cube.color live_cube = CubeShape() if live_cube.conflict(live_cube.center): gameover = True score = 0 live_cube = None screen_color_matrix = [[None] * GRID_NUM_WIDTH for i in range(GRID_NUM_HEIGHT)] # 消除满行 remove_full_line() counter += 1 # 更新屏幕 screen.fill(BLACK) draw_grids() draw_matrix() draw_score() if live_cube is not None: live_cube.draw() if gameover: show_welcome(screen)    pygame.display.update()


4、连连看

1. 案例介绍

连连看是一款曾经非常流行的小游戏。游戏规则:

  1. 点击选中两个相同的方块。

  2. 两个选中的方块之间连接线的折点不超过两个(接线由X轴和Y轴的平行线组成)。

  3. 每找出一对,它们就会自动消失。

  4. 连线不能从尚未消失的图案上经过。

  5. 把所有的图案全部消除即可获得胜利。

2. 设计思路

  1. 生成成对的图片元素。

  2. 将图片元素打乱排布。

  3. 定义什么才算 相连(两张图片的连线不多于3跟直线,或者说转角不超过2个)。

  4. 实现 相连 判断算法。

  5. 消除图片元素并判断是否消除完毕。

3. 示例效果

4. 示例源码

from tkinter import *from tkinter.messagebox import *from threading import Timerimport timeimport random

class Point: # 点类 def __init__(self, x, y): self.x = x self.y = y

# --------------------------------------

'''判断选中的两个方块是否可以消除'''

def IsLink(p1, p2): if lineCheck(p1, p2): return True if OneCornerLink(p1, p2): # 一个转弯(折点)的联通方式 return True if TwoCornerLink(p1, p2): # 两个转弯(折点)的联通方式 return True return False

# ---------------------------def IsSame(p1, p2): if map[p1.x][p1.y] == map[p2.x][p2.y]: print("clicked at IsSame") return True return False

def callback(event): # 鼠标左键事件代码 global Select_first, p1, p2 global firstSelectRectId, SecondSelectRectId
# print ("clicked at", event.x, event.y,turn) x = (event.x) // 40 # 换算棋盘坐标 y = (event.y) // 40 print("clicked at", x, y)
if map[x][y] == " ": showinfo(title="提示", message="此处无方块") else:
if Select_first == False: p1 = Point(x, y) # 画选定(x1,y1)处的框线 firstSelectRectId = cv.create_rectangle(x * 40, y * 40, x * 40 + 40, y * 40 + 40, width=2, outline="blue") Select_first = True else: p2 = Point(x, y) # 判断第二次点击的方块是否已被第一次点击选取,如果是则返回。 if (p1.x == p2.x) and (p1.y == p2.y): return # 画选定(x2,y2)处的框线 print('第二次点击的方块', x, y) # SecondSelectRectId=cv.create_rectangle(100,20,x*40+40,y*40+40,width=2,outline="yellow") SecondSelectRectId = cv.create_rectangle(x * 40, y * 40, x * 40 + 40, y * 40 + 40, width=2, outline="yellow") print('第二次点击的方块', SecondSelectRectId) cv.pack()
# 判断是否连通 if IsSame(p1, p2) and IsLink(p1, p2): print('连通', x, y) Select_first = False # 画选中方块之间连接线 drawLinkLine(p1, p2) # clearTwoBlock() # time.sleep(0.6) # clearFlag=True t = Timer(timer_interval, delayrun) # 定时函数 t.start()

else: # 重新选定第一个方块 # 清除第一个选定框线 cv.delete(firstSelectRectId) cv.delete(SecondSelectRectId) # print('清除第一个选定框线') # firstSelectRectId=SecondSelectRectId # p1=Point(x,y) #设置重新选定第一个方块的坐标 Select_first = False

timer_interval = 0.3 # 0.3秒

# --------------------------------------def delayrun(): clearTwoBlock() # 清除连线及方块

def clearTwoBlock(): # 清除连线及方块 # 延时0.1秒 # time.sleep(0.1) # 清除第一个选定框线 cv.delete(firstSelectRectId) # 清除第2个选定框线 cv.delete(SecondSelectRectId) # 清空记录方块的值 map[p1.x][p1.y] = " " cv.delete(image_map[p1.x][p1.y]) map[p2.x][p2.y] = " " cv.delete(image_map[p2.x][p2.y]) Select_first = False undrawConnectLine() # 清除选中方块之间连接线

def drawQiPan(): # 画棋盘 for i in range(0, 15): cv.create_line(20, 20 + 40 * i, 580, 20 + 40 * i, width=2) for i in range(0, 15): cv.create_line(20 + 40 * i, 20, 20 + 40 * i, 580, width=2) cv.pack()

def print_map(): # 输出map地图 global image_map for x in range(0, Width): # 0--14 for y in range(0, Height): # 0--14 if (map[x][y] != ' '): img1 = imgs[int(map[x][y])] id = cv.create_image((x * 40 + 20, y * 40 + 20), image=img1) image_map[x][y] = id cv.pack() for y in range(0, Height): # 0--14 for x in range(0, Width): # 0--14 print(map[x][y], end=' ') print(",", y)

'''* 同行同列情况消除方法 原理:如果两个相同的被消除元素之间的 空格数spaceCount等于他们的(行/列差-1)则 两者可以联通消除* x代表列,y代表行* param p1 第一个保存上次选中点坐标的点对象* param p2 第二个保存上次选中点坐标的点对象'''

# 直接连通def lineCheck(p1, p2): absDistance = 0 spaceCount = 0 if (p1.x == p2.x or p1.y == p2.y): # 同行同列的情况吗? print("同行同列的情况------") # 同列的情况 if (p1.x == p2.x and p1.y != p2.y): print("同列的情况") # 绝对距离(中间隔着的空格数) absDistance = abs(p1.y - p2.y) - 1 # 正负值 if p1.y - p2.y > 0: zf = -1 else: zf = 1 for i in range(1, absDistance + 1): if (map[p1.x][p1.y + i * zf] == " "): # 空格数加1 spaceCount += 1 else: break; # 遇到阻碍就不用再探测了
# 同行的情况 elif (p1.y == p2.y and p1.x != p2.x): print(" 同行的情况") absDistance = abs(p1.x - p2.x) - 1 # 正负值 if p1.x - p2.x > 0: zf = -1 else: zf = 1 for i in range(1, absDistance + 1): if (map[p1.x + i * zf][p1.y] == " "): # 空格数加1 spaceCount += 1 else: break; # 遇到阻碍就不用再探测了 if (spaceCount == absDistance): # 可联通 print(absDistance, spaceCount) print("行/列可直接联通") return True else: print("行/列不能消除!") return False else: # 不是同行同列的情况所以直接返回false return False;
# --------------------------------------

# 第二种,直角连通'''直角连接,即X,Y坐标都不同的,可以用这个方法尝试连接 param first:选中的第一个点 param second:选中的第二个点'''

def OneCornerLink(p1, p2): # 第一个直角检查点,如果这里为空则赋予相同值供检查 checkP = Point(p1.x, p2.y) # 第二个直角检查点,如果这里为空则赋予相同值供检查 checkP2 = Point(p2.x, p1.y); # 第一个直角点检测 if (map[checkP.x][checkP.y] == " "): if (lineCheck(p1, checkP) and lineCheck(checkP, p2)): linePointStack.append(checkP) print("直角消除ok", checkP.x, checkP.y) return True # 第二个直角点检测 if (map[checkP2.x][checkP2.y] == " "): if (lineCheck(p1, checkP2) and lineCheck(checkP2, p2)): linePointStack.append(checkP2) print("直角消除ok", checkP2.x, checkP2.y) return True print("不能直角消除") return False;

# -----------------------------------------'''#第三种,双直角连通双直角联通判定可分两步走:1. 在p1点周围4个方向寻找空格checkP2. 调用OneCornerLink(checkP, p2)3. 即遍历 p1 4 个方向的空格,使之成为 checkP,然后调用 OneCornerLink(checkP, p2)判定是否为真,如果为真则可以双直角连同,否则当所有的空格都遍历完而没有找到一个checkP使OneCornerLink(checkP, p2)为真,则两点不能连同具体代码:
双直角连接方法@param p1 第一个点@param p2 第二个点'''

def TwoCornerLink(p1, p2): checkP = Point(p1.x, p1.y) # 四向探测开始 for i in range(0, 4): checkP.x = p1.x checkP.y = p1.y # 向下 if (i == 3): checkP.y += 1 while ((checkP.y < Height) and map[checkP.x][checkP.y] == " "): linePointStack.append(checkP) if (OneCornerLink(checkP, p2)): print("下探测OK") return True else: linePointStack.pop() checkP.y += 1 print("ssss", checkP.y, Height - 1) # 补充两个折点都在游戏区域底侧外部 if checkP.y == Height: # 出了底部,则仅需判断p2能否也达到底部边界 z = Point(p2.x, Height - 1) # 底部边界点 if lineCheck(z, p2): # 两个折点在区域外部的底侧 linePointStack.append(Point(p1.x, Height)) linePointStack.append(Point(p2.x, Height)) print("下探测到游戏区域外部OK") return True # 向右 elif (i == 2): checkP.x += 1 while ((checkP.x < Width) and map[checkP.x][checkP.y] == " "): linePointStack.append(checkP) if (OneCornerLink(checkP, p2)): print("右探测OK") return True else: linePointStack.pop() checkP.x += 1 # 补充两个折点都在游戏区域右侧外部 if checkP.x == Width: # 出了右侧,则仅需判断p2能否也达到右部边界 z = Point(Width - 1, p2.y) # 右部边界点 if lineCheck(z, p2): # 两个折点在区域外部的底侧 linePointStack.append(Point(Width, p1.y)) linePointStack.append(Point(Width, p2.y)) print("右探测到游戏区域外部OK") return True # 向左 elif (i == 1): checkP.x -= 1 while ((checkP.x >= 0) and map[checkP.x][checkP.y] == " "): linePointStack.append(checkP) if (OneCornerLink(checkP, p2)): print("左探测OK") return True else: linePointStack.pop() checkP.x -= 1 # 向上 elif (i == 0): checkP.y -= 1 while ((checkP.y >= 0) and map[checkP.x][checkP.y] == " "): linePointStack.append(checkP) if (OneCornerLink(checkP, p2)): print("上探测OK") return True else: linePointStack.pop() checkP.y -= 1
# 四个方向都寻完都没找到适合的checkP点 print("两直角连接没找到适合的checkP点") return False;

# ---------------------------# 画连接线def drawLinkLine(p1, p2): if (len(linePointStack) == 0): Line_id.append(drawLine(p1, p2)) else: print(linePointStack, len(linePointStack)) if (len(linePointStack) == 1): z = linePointStack.pop() print("一折连通点z", z.x, z.y) Line_id.append(drawLine(p1, z)) Line_id.append(drawLine(p2, z)) if (len(linePointStack) == 2): z1 = linePointStack.pop() print("2折连通点z1", z1.x, z1.y) Line_id.append(drawLine(p2, z1)) z2 = linePointStack.pop() print("2折连通点z2", z2.x, z2.y) Line_id.append(drawLine(z1, z2)) Line_id.append(drawLine(p1, z2))

# 删除连接线def undrawConnectLine(): while len(Line_id) > 0: idpop = Line_id.pop() cv.delete(idpop)

def drawLine(p1, p2): print("drawLine p1,p2", p1.x, p1.y, p2.x, p2.y) # cv.create_line( 40+20, 40+20,200,200,width=5,fill='red') id = cv.create_line(p1.x * 40 + 20, p1.y * 40 + 20, p2.x * 40 + 20, p2.y * 40 + 20, width=5, fill='red') # cv.pack() return id

# --------------------------------------def create_map(): # 产生map地图 global map # 生成随机地图 # 将所有匹配成对的动物物种放进一个临时的地图中 tmpMap = [] m = (Width) * (Height) // 10 print('m=', m) for x in range(0, m): for i in range(0, 10): # 每种方块有10个 tmpMap.append(x) random.shuffle(tmpMap) for x in range(0, Width): # 0--14 for y in range(0, Height): # 0--14 map[x][y] = tmpMap[x * Height + y]

# --------------------------------------def find2Block(event): # 自动查找 global firstSelectRectId, SecondSelectRectId m_nRoW = Height m_nCol = Width bFound = False; # 第一个方块从地图的0位置开始 for i in range(0, m_nRoW * m_nCol): # 找到则跳出循环 if (bFound): break
# 算出对应的虚拟行列位置 x1 = i % m_nCol y1 = i // m_nCol p1 = Point(x1, y1) # 无图案的方块跳过 if (map[x1][y1] == ' '): continue # 第二个方块从前一个方块的后面开始 for j in range(i + 1, m_nRoW * m_nCol): # 算出对应的虚拟行列位置 x2 = j % m_nCol y2 = j // m_nCol p2 = Point(x2, y2) # 第二个方块不为空 且与第一个方块的动物相同 if (map[x2][y2] != ' ' and IsSame(p1, p2)): # 判断是否可以连通 if (IsLink(p1, p2)): bFound = True break # 找到后自动消除 if (bFound): # p1(x1,y1)与p2(x2,y2)连通 print('找到后', p1.x, p1.y, p2.x, p2.y) # 画选定(x1,y1)处的框线 firstSelectRectId = cv.create_rectangle(x1 * 40, y1 * 40, x1 * 40 + 40, y1 * 40 + 40, width=2, outline="red") # 画选定(x2,y2)处的框线 secondSelectRectId = cv.create_rectangle(x2 * 40, y2 * 40, x2 * 40 + 40, y2 * 40 + 40, width=2, outline="red") # t=Timer(timer_interval,delayrun)#定时函数 # t.start()
return bFound

# 游戏主逻辑root = Tk()root.title("Python连连看 ")imgs = [PhotoImage(file='images\\bar_0' + str(i) + '.gif') for i in range(0, 10)] # 所有图标图案Select_first = False # 是否已经选中第一块firstSelectRectId = -1 # 被选中第一块地图对象SecondSelectRectId = -1 # 被选中第二块地图对象clearFlag = FalselinePointStack = []Line_id = []Height = 10Width = 10map = [[" " for y in range(Height)] for x in range(Width)]image_map = [[" " for y in range(Height)] for x in range(Width)]cv = Canvas(root, bg='green', width=440, height=440)# drawQiPan( )cv.bind("<Button-1>", callback) # 鼠标左键事件cv.bind("<Button-3>", find2Block) # 鼠标右键事件cv.pack()create_map() # 产生map地图print_map() # 打印map地图root.mainloop()


————————————————

版权声明:本文为CSDN博主「Amo Xiang」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:https://blog.csdn.net/xw1680/article/details/116201057

-End-

最近有一些小伙伴,让我帮忙找一些 面试题 资料,于是我翻遍了收藏的 5T 资料后,汇总整理出来,可以说是程序员面试必备!所有资料都整理到网盘了,欢迎下载!

点击👆卡片,关注后回复【面试题】即可获取

在看点这里好文分享给更多人↓↓

文章引用微信公众号"程序员大咖",如有侵权,请联系管理员删除!

博客评论
还没有人评论,赶紧抢个沙发~
发表评论
说明:请文明发言,共建和谐网络,您的个人信息不会被公开显示。